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FOREWORD

The present report is one of a series of six reports, published simul-
taneously, which describe analyses and computational procedures for: 1) pre-
diction of the in-depth response of charring ablation materials, based on one-
dimensional thermal streamtubes of arbitrary cross-section and considering
general surface chemical and energy balances, and 2) nonsimilar solution of
chemically reacting laminar boundary layers, with an approximate formulation
for unequal diffusion and thermal diffusion coefficients for all species and
with a general approach to the thermochemical solution of mixed equilibrium-~
nonequilibrium homogeneous or heterogeneous systems. Part I serves as a
summary report and describes a procedure for coupling the charring ablator
and boundary layer routines. The charring ablator procedure is described in
Part 1II, whereas the fluid-mechanical aspects of the boundary layer and the
boundary-layer solution procedure are treated in Part III. The approximation
for multicomponent transport properties and the thermochemistry model are
described in Parts IV and V, respectively. Finally, in Part VI an analysis
is presented for the in-depth response of charring materials taking into ac-
count char-density buildup near the surface due to coking reactions in depth.

The titles in the series are:

Part I Summary Report: An Analysis of the Coupled Chemically Reacting
Boundary Layer and Charring Ablator, by R. M. Kendall, E. P.
Bartlett, R. A. Rindal, and C. B. Moyer.

Part II Finite Difference Solution for the In-depth Response of Charring
Materials Considering Surface Chemical and Energy Balances, by
C. B. Moyer and R. A. Rindal.

Part III Nonsimilar Solution of the Multicomponent Laminar Boundary Layer
by an Integral Matrix Method, by E. P. Bartlett and R. M. Kendall,

Part IV A Unified Approximation for Mixture Transport properties for Multi-
component Boundary-Layer Applications, by E. P. Bartlett, R. M.
Kendall, and R. A. Rindal.

Part V A General Approach to the Thermochemical Solution of Mixed Equilib-
rium-Nonequilibrium, Homogeneous or Heterogeneous Systems, by
R. M. Kendall.

Part VI An Approach for Characterizing Charring Ablator Response with In-
depth Coking Reactions, by R. A. Rindal.

This effort was conducted for the Structures and Mechanics Division of
the Manned Spacecraft Center, National Aeronautics and Space Administration
under Contract No. NAS9-4599 to Vidya Division of Itek Corporation with Mr.
Donald M. Curry and Mr. George Strouhal as the NASA Technical Monitors. The
work was initiated by the present authors while at vidya and was completed
by Aerotherm Corporation under subcontract to Vidya (P.O. 8471 Vv9002) after
Rerotherm purchased the physical assets of the Vidya Thermodynamics Depart-
ment. Dr. Robert M. Kendall of Aerotherm was the Program Manager and Prin-

cipal Investigator.
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ABSTRACT

A general equilibrium and nonequilibrium chemical state procedure is
developed and applied mathematically to a number of open and closed thermo-
dynamic systems. The conventional equilibrium relations are developed in
terms of a set of base species. The base species concept is then extended
in order to treat mixed equilibrium and nonequilibrium systems in a general
fashion. The specification of controlling reactions is used to create non-

redundant equation sets as equilibrium is approached.

The treatment of open system mass balances within the basic framework
of the state solution permits direct surface state calculations considering
boundary-layer transfer relations and surface-condensed phase removal rela-
tions. The relations defining the state downstream of an oblique shock are
also included in the basic solution procedure permitting direct evaluation

of these relations without recourse to subordinate iterative schemes.

The factors affecting convergence within the framework of the Newton-
Raphson iterative procedure are discussed and the techniques employed in the
study are described. The means of evaluating state derivatives is described
and relations presented for specific examples.

The computer program which performs the equilibrium state solutions
according to the methods presented, the Aerotherm Chemical Equilibrium (ACE)
program is described briefly. The program which contains some of the nonequi-
librium features of the analysis, the ACE/KINET program is also introduced.
The current operational status of both programs is presented.
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A GENERAL APPROACH TO THE THERMOCHEMICAL SOLUTION
OF MIXED EQUILIBRIUM-NONEQUILIBRIUM, HOMOGENEOUS
OR HETEROGENEOUS SYSTEMS

SECTION 1
INTRODUCTION

In the study of high-energy boundary-layer phenomena, thermochemical
processes can be of dominant importance. This is particularly true when
these boundary layers interact with chemically active surfaces. 1In the pres-
ent study, interest is directed toward the superorbital reentry of the Apollo
vehicle and the thermochemical response of its heat shield. The requirements
for evaluating the chemical state of homogeneous and heterogeneous systems in
this study are extensive. These requirements include the determination of
the chemical state after normal or oblique shock wave compression, during the
isentropic expansion of the inviscid shock-layer gases, within the boundary
layer and at the chemically active surface. In the last two instances these
state calculations are coupled with complex mass-balance relations. Many
chemical-state solution procedures have been documented to treat reasonably
standard closed systems, such as those associated with expansion processes.
(See, for example, Refs. 1 through 4.) For open systems, only a few direct
solution procedures have been documented. The surface state calculation for a
general chemical system described in Ref. 5 falls into a special class of open
system problems. Because of the number of requirements imposed upon the chemi-
cal-state routines in the present study, the general treatment of a variety of
chemical systems became a major effort. The inclusion of a general kinetic
model, ionization, and the extensive bookkeeping associated with the downstream
introduction of new species is of major importance in the formulation of the
general problem necessary for thoroughly treating the coupled boundary-layer
problem.

Starting from reasonably fundamental relations, the procedures adopted as
a part of this research effort are described in this report. The basic rela-
tions are presented in the next section followed by sections on the solution

procedure and the evaluation of thermodynamic properties.

These techniques have been built in greater or lesser extent into the
Aerotherm Chemical Equilibrium (ACE) program and certain special modifications
of it, The final section of this report specifies the exact status of these
routines and the extent to which the general formulation presented herein has
been implemented. The procedures are presently limited to equilibrium, except
that selected homogeneous reactions can be considered frozen within the bound-
ary layer and selected heterogeneous and surface catalyzed kinetically con-

trolled reactions can proceed at the material surface.



SECTION 2
BASIC RELATIONS

In this section the relations which are required to specify the chemical

state of a system are presented. Basically four types of relations can be

considered in a general open system. These are the equilibrium relations

applying to those reactions which can be considered as generally equilibrated,

the nonequilibrium relations for those reactions which can be (but are
necessarily) out of equilibrium, the mass-balance relations, and those

tional state constraints imposed on the system.

2.1 EQUILIBRIUM RELATIONS - TOTALLY EQUILIBRATED SYSTEMS

In a chemical system there will exist, in the general case, a set

dependent equilibrium reactions. All other equilibrium reactions will

not
addi-

of in-

be equiv-

alent, both physically and mathematically, to this independent set. Consider

for example the simple H, 0, HO, H,O, H

20+ Hyr Ops Hy0,5, O
dent equilibrium reactions can be written, for example

H+0 & oH

2H + 0 +# H,0
2H < H,
20 & o,

2H + 20 +& H,0,
30 ® 0,

Other reactions such as

L =2
H, + 202 H20

system. Six indepen-

(1)

(2)

(3)

(4)

(5)

(6)

(7

are merely linear combinations of the six (arbitrarily selected) independent
equations (i.e., Eq. (7) = Eq. (2) - Eq. (3) - %Eq. (4)). It can be shown
that in a completely equilibrated system the number of independent equations

is usually equal to the number of molecules less the number of elements.* The

* . . . .
An exception occurs when two or more elements are in the same ratio in all

molecules of a system, e.g., the system NO

. N,O
dent equations. 2 274

has one (not zero) indepen-



modification of this relation for systems that are not completely equilibrated
will be considered in Section 2.2, The selection of this set of indepen-

dent reactions can be done arbitrarily, but it is convenient to establish

some consistent technique. Most such techniques are based on the pre-selection
of a set of species usually equal in number to the number of elements. The
formation reactions of all other species from this base set represent the
independent set of equilibrium reactions. The base species must be selected
in such a fashion that no reaction can be written wherein reactants and pro-
ducts are all base species. Thus in the above set HO and H202 represent an
invalid base set whereas HO and 0, HO and H, etc., represent valid sets. It
has been reasonably common practice to select the monatomic gases as base spe-
cies (Ref. 3, for example) since the formulation of the formation reactions

is particularly convenient. There are advantages, however, in selecting a
more general set,particularly when chemical kinetics are important. Consider-
ing a set of base species Ni' formation reactions for the remaining Nj species
are of the form, indicated for example in Ref. 4,

-
Z\)jiNi - Nj (8)

where the Vji are the stoichiometric coefficients of the formation reactions.

In the preceding example with H and O as Ny and N2, respectively, the v

ji
would be

while with H20 and 02 as Nl and N2, the Vji would be

i 1 2 3 4 5 6 7 8
i HO | 0, | H HO H, [H,0,| O
1 Hy0 | 1 0 510 |.5 1 1 0
2 o, 0 1 |-.25| .5 (.25 |-.5 [.5 |[1.5




Mathematically, the Vji are obtained implicitly from the ckj (the atoms
of element k in molecule 3j) by
3" _
/. %ivVii T ki (9)
i
which for the latter table with j = 7 (i.e., H202) indicates
for k representing hydrogen 2 x 1 + 0 x .5 = 2
for k representing oxygen 1x1+2x .5 = 2
In matrix form
v T = -t
. ji = %k k3 (10)

where the superscript T denotes transpose. Note that the square array

Cypi ©an be considered as a subset of the larger rectangular array ij'

The set of independent formation reactions (Eq. (8)} for j ranging from
N, +1 to N,
number of species, can be used to formulate a set of equilibrium constraints.

where Ny is the number of base species and Ng is the total

At equilibrium, the second law requires that these independent reactions
occur without change in free energy. Therefore

Gj = E:VjiGi (11)
i

where the Gj are the partial molar free energies of the species (also referred
to as the chemical potentials). The change in free energy is, by definition,
equal to the isothermal reversible work performed by a steady flowing system

in passing from one state to another. On this basis it is possible to relate
the Gj to the standard-state free energies, G?, that is, the free energy

of the species at the same temperature but undiluted and at one atmosphere
pressure, Thus

P
o
Gj - Gj = l:-—f vdPil (12)
p° isothermal, reversible
where P° is one atmosphere. For a gas obeying the perfect gas law
G. - G? = - RT 4n p (13)
3 3 3




if Py is in units of atmospheres. Likewise, for an incompressible condensed

phase containing only one species

(14)

When more than one condensed species coexists in a phase, the work of mixing

must be included. For an ideal mixture*

G, -G, = ———= - RT £n x (15)

where X, is the mole fraction of species £ in the mixture.

In environments of general concern in high-temperature thermodynamics,
Egs. (13) and (14) are generally employed and, in addition, (1 - P)/pz is
assumed negligible in relation to the gas-phase work terms. On this basis,
simplified equilibrium constant relations are obtained from Egs. (11) and

(13) for gas and condensed species (sub j or &),

AG?
in K = - —J = 4gn Py - E:Vji 4n p,; (16)
i

where the standard-state free energy change of the formation reaction for

species j (or 2) is defined by
o o o
X = L - .G 17
A3 Ch E"Jl i (17)
i

and the partial pressure of condensed species will be taken as one atmosphere

in order that Eg. (13) will indicate no work of compression.

The standard state free energy is a function of temperature only and is

obtained for each molecular species from

(o} o]
G2 = H. - TS, 18
J ] J (18)

where enthalpies are obtained relative to some chemical base state, often the
elements in their most natural form at 298°K and one atmosphere (JANAF base

* . . .

The ideal mixture assumption is satisfied by a mixture above which vapor pres-
sures are proportional to mixture mole fractions and whose vapors obey the
perfect gas law.



state)., If any other base state is consistently adopted, the AG? will be

unaffected.

The stationary condition of the free energy at equilibrium expressed in
Eq. (11) is consistent with the minimum free energy statement often utilized
in seeking the equilibrium state. Although the formulation followed here
differs from those followed in free-energy minimization approaches, the ulti-

mate numerics can reduce to an identical iterative solution procedure.

The solution of the set of algebraic equations (Eq. (16)) must be con-

sidered in conjunction with other constraints including the pressure balance

ij = P (19)
]

where the summation is over all gas-phase species. The detailed solution pro-

cedure will be considered only after all relations have been presented.

2.2 MIXED EQUILIBRIUM~NONEQUILIBRIUM RELATIONS

When some reactions fail to equilibrate it is necessary to approach the
selection of the independent set of equilibrium reactions with greater caution.
In a general chemical system, certain sets of molecules can be treated as al-
ways equilibrated. Between these sets certain independent equilibrium and
kinetically-controlled interchange reactions may exist. A procedure for treat-

ing mixed equilibrium-nonequilibrium systems is presented in this section.
The following rules are established in order to organize the logic:
1. Every species is assigned to one and only one set of molecules.
2, A set may contain as few as one species.

3. Each set has its own base species, i.e., that minimum number of

species from which all other members of the set may be formed.

4. Within each set all possible reactions between member species

are equilibrated.

5. Equilibrium interchange reactions involve species from more

than one set.

Consider the eight species of the 0-H system considered in Section 2.1;

o, H207 H; H2; 02, 03; HO, H202 where five sets are divided by semicolons.

For these sets, the following base species are appropriate: O, H20; H; H2;
02; HO where only the first set requires more than one base species. At
this juncture only two independent equilibrium reactions have been formulated,

namely




1.5 0 = 0,4 (20)
(21)

Two independent equilibrium interchange reactions might be included in this
system, for example

H+0H==‘-H2+0 (22)

o+0H<‘—’02+H (23)
The effect of these reactions is to reduce the number of base species by two.
For example H2 and O2 can be deleted. The remaining base species and the

array of formation reactions coefficients, Vji' are therefore

i o H,0 H OH | H, 0, [Hy0,| 04
1 o 1l 0 0 0 -1 1 0 1.5
2 H20 0 1 ] 0 0 0 0 0
3 H 0 0 1 ) 1 -1 0 Hl.5
4 OH| O 0 0 1 1 1 2 1.5

in the general relation

-— »
) viN TN (8)

1

To illustrate, the equilibrium formation reaction for 04 (i.e., j =8 in
the above table) from the base species is given by

3/2 0+ 3/2 0H - 3/2H + 0,4 (24)

If it is assumed that all other interchange reactions are frozen, the
formulation of the equilibrium-nonequilibrium aspects of the program are com-
plete. 1In the totally equilibrated chemical system, conservational constraints



are often applied to the elements. In the system just presented, however,
additional conservational constraints are required. 1In general these con-
straints take the form

JIZTLIIEN (25)
3

where nj is the number of moles of species j 1in a unit mass of system and
ay is a conserved variable relating to the "elemental" composition of a unit
mass of the system. One such constraint is applied for each base species., To
check the validity of this relation, consider the effect of a unit reduction

in nj, . According to Eq. (8) the n; will increase by v, . Thus in

s
Eq. (25) two terms are modified, namely, Viihy and vj,in;,l. Since Vi =
1.0, it is apparent that the increase in the latter term exactly balances the
decrease in the former. 1In effect, the base species become the elements of

the system, and their total masses can be treated as the conserved variable of
the system. This generalized concept of the conserved "elements" of the sys-—
tem is extremely important to the present development and thus further examples
are appropriate. In the completely equilibrated system previously presented,

it is easy to accept that

1
Z CyMy = Oy (26)
3

where ai , the total number of atoms of element k in a unit mass, is a con-
served variable. If we premultiply both sides of this expression by the in-

verse |cp '-1 , there results from Eq. (10)
i

z:vjini = lcki|—l a; =ay (27)

i
Therefore if the ai are conserved then the ay will be conserved. 1In the
system of Egs. (1) through (6), this is tantamount to naming a new set of
e lements which are, in effect, the base species. The term "element" (in quotes)
will be used henceforth in this report to refer to those atoms or groupings of
atoms (i.e. grouped according to the base species formulae) which according to
the equilibrium relations are conserved.

In the general nonequilibrium system, certain kinetically-controlled

reactions will be important. For example, in the H-O system

H+H+M—=H, +M (28)
0+0+M=0, +M (29)
H+H+ O0—H,0 (30)




are three reactions of possible interest, M being any third body. The rates
of these reactions can be related to the partial pressures of the reactants and
products, the ultimate equilibrium constraint appropriate to the reaction, and

the kinetic coefficient. With the general kinetic reaction in the form
R P
LR n ) B 31
o Mgy L gy (31)
J ]
its rate can be expressed generally by

UR U-P
R = I I m _ L1 ‘ l jm
Rm kF Pj K Pj (32)

L3 Pm 3

or by
R = k exp uR in p. - exp u? 4n p. - 4n K (33)
m Fm jm J m J P
3 J
where
o
AG
_ ~_m_ 1 E: P _ R o
4n KP = - = 2T {j (ujm “jm) Gj (34)
m

The net effect of these reactions is the modification of the "elemental" makeup
of the system. The kinetic reactions will cause a net increase rate (moles per
unit volume)

Ty =§: E: (ugm - I'll;m)\)ji ﬁﬁ (33)
m ]
of "element" i . It is this relation which will be introduced into the
conservational equations in order to establish the local state of the reacting
chemical system. Certain additional data must be provided in order to perform
the kinetic calculations. First, the specification of the stoichiometry serves
to establish not only the effect of the reaction but also the reaction order.

For example

¢t + =0, =CO (36)

*
38 [



and

2c* + 0, — 2C0 (37)

are equivalent stoichiometrically, the asterisk designating condensed-phase
material. However, in Eq. (32), the former relation results in a half order

reaction (pc* = 1.0)*, whereas the latter results in a first-order reaction.

The forward rate constant Kkp , hopefully based on experimental data, is

. Loo.m .
represented with an Arrhenius type function

kF = Bm exp
m

E_ /RT ) (38)
m

where the exponential factor establishes the probability of a collision having
energy in excess of the activation energy Eam and the factor Bm represents a
multitude of phenomena associated with the probability of success of a single

collision (e.g. collision orientation).

When kinetically-controlled reactions approach equilibrium, difficulty is
often encountered in the treatment of the relevant conservational equations.
To understand the nature of this difficulty, and thus the means of avoiding
it, it is instructive to consider the simple time dependent character of the
H-O system previously described. Recalling that oy represents the moles of
"element" 1 in a unit mass, and that r, represents the rate of production

of moles of "element" i per unit volume, it follows that

dai ) riRT

dt P

(39)

At this point it is necessary to introduce a new concept. From the base

species, a subset of N, base-base species can be obtained much as if all speci-

bb
fied kinetic reactions were permitted to equilibrate. For this example, O and H
will be selected for this honor and the " formation reaction" for the remaining

base species written as

2H + 0 — H,0 (40)

H + O — OH (41)

* -
As in the equilibrium relation, it is convenient to consider the partial pres-
sures of condensed species as one atmosphere as a device to include hetero-
geneous reactions in the same framework as homogeneous reactions.

10




These reactions will equilibrate if the kinetic reaction (Eq. (30)) and the
reaction of either Eq. (28) or Eq. (29) have infinite rates.* More generally,
Egs. (40) and (41) can be written as

; Tk NN (42)

where the index k represents the base-base subset of base species. It can
be shown that

Ezcik r, =0 (43)

which implies that atoms and/or certain combinations of atoms cannot be created
or destroyed by chemical reactions in this system. Since there are two base-

base species, two of the Egs. (39) can be replaced by

E: da .
i _RT _
~%i%x d& ~pm &%k Fi = O (44)
i i
Defining
ak = E:Olk al (45)
i
it follows that
aw.
k _
gt - ° (46)

For each base species i which is also a base-base species k , an
equation of the form of Eq. (46) will replace the corresponding one of the
form of Eqg. (39). The other Egs. (39) are maintained unaltered in the system
of equations and still contain the kinetic expressions. These will be referred
to as the reactive mass balance equations. In the general case, a given
reaction, m , will affect more than one of these equations introducing a term
of the form

*
The number of base-base species can still exceed the number of atomic elements
in the system if insufficient kinetic paths have been specified to permit full
system equilibrium.

°
-~

11



E: P R E: R
- (ujm - ujm)vji kF exp “jm tn Py
J m j

P R
x(l - exp) E:(u. - u3 ¥Mnp, - £ K (48)
[ 3 am T Hgd TR Py T I K

If the first term in braces approaches infinity, the balancing of the overall
reactive mass balance equation will reduce to setting the second term in

braces equal to unity, or equivalently,

1
o

g P R
- .- K
; (ujm ujm)Zn P 4n Py (49)

which is simply the appropriate equilibrium relation. If this reduction for
reaction m occurs in more than one mass balance equation, a net loss of non-
redundant relations can occur.* To avoid this, it is important that the reac-
tive mass balance equations be combined in such a manner that the production
terms from each near-equilibrated reaction is entered into only one equation.
The means of establishing this combination of the reactive mass balance equa-~
tions is based on the selection of controlling reactions equal in number to

the number of reactive mass balances. (This number equals the difference between
the number of base species and the number of base-base species.) In turn the

selection of the controlling reactions is based on the array Qim where
N E: P _ R
Qim = [ : (ujm “jm)vji] L3

The performance of a conventional pivotal Gaussian reduction on this rectangular

R
exp E M &n p. (50)
N 37 im j

array results in the selection of certain of the Qi as pivotal terms. It is
the column numbers, m , of these terms which are considered as the indices of
the controlling reactions, one having been selected for each reactive mass
balance, i . The combination of the reactive mass balance equations such as
to eliminate terms consequent to the controlling reactions from all but one
equation thus becomes a relatively straight-forward manipulation following the
same steps as the original Gaussian reduction. This manipulation is carried
forward independently for both the mass balances and the kinetic relations,
before the two sets are combined, in order to avoid the loss of important
significant figures. In actual practice, this manipulation is performed in
conjunction with the transformation indicated by Eq. (44) and is effected by
an augmented Oy i transformation matrix.

* . . PR .
Such a loss is only a result of the limited significant figures retained in the
calculational process since differences in the other terms in the equation
could still be used if unlimited significant figures existed.
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2.3 MASS BALANCE RELATIONS

In the preceding sections the equilibrium and nonequilibrium relations
have been developed for a fairly general chemical state. These relations are
in themselves insufficient until other relations, in particular the mass
balance relations, are imposed. In the case of kinetic control, the time
dependence of the system must be equated to flow rates and other rate dependent
parameters entering the mass balances. Likewise, in diffusional systems the
local state is determined by mass-balance relations associated with mass-
transfer processes. In the following subsections the mass balance relations

appropriate to various systems will be presented.

2.3.1 Expansion of Isolated Systems

In the expansion of a fixed mass, closed, adiabatic system it is usually
appropriate to trace its state history as a function of static pressure. If
the process is reversible, the entropy is constant and the local state is not
a function of the time history (process path) of the expansion. Such systems

satisfy the simple mass balance constraint

a; = constant (51)

This equation implies either total equilibrium or a mixed equilibrium-frozen
chemical process. 1If, however, finite reaction rates are important, the path
ceases to be reversible, entropy rises, and the time history of the expansion
must be considered. If the pressure is a known function of time, the expansion

can be treated as

state = f(ai, s, P) (52)

where the state includes such terms as dai/dt and ds/dt . The rate of change
of the "elemental" composition is obtained from Egs. (33) and (35), whereas the
rate of increase in entropy (see, e.g., Ref. 6, Eg. (3.32)) is obtained from

A
ds ) ‘mz RT
dt ~L.T Ry P (53)
m
where AL (the "affinity") is defined as
J

P R
Am = RT[JanPm - Ej:(ujm - ujm).en p.] (54)
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Thus

——-=RZ an Z(u n T M )ﬂnp]_‘m 2z (55)

PM

This derivative is well behaved, even as equilibrium is approached, and may be
evaluated explicitly if desired. The a, derivatives, however, must be
treated implicitly if any hope for near equilibrium solutions is to be main-
tained. Once a particular formulation is adopted, the techniques suggested in
the nonequilibrium presentation (Section 2.2) can be introduced in order to
assure consistent solution validity. Because of the simplicity of the mass-
balance relation for this process, it is practical to include the kinetic mass
balances directly with the iterative solution of the chemical state. This
state calculation includes the relations previously presented together with the

entropy constraint, namely
§ p.S. = PMs 56
33 (56)

where the entropy of a perfect gas species j 1is related to the standard

state entropy (at one atmosphere pressure) by

o
S. = 8. - R 4n p. 57
3 3 Py (57)
and S? is a function of temperature only. For condensed species the simpli-
fying assumption presented previously leads to Sj = S? . In all standard

conservation equations, the partial pressure, pj , assumes the general defini-

tion of the number of moles of species j for P gas-phase moles.

2.3.2 State Calculations for Open Systems

The evaluation of the state in a general open system involving diffusive
and convective mass and energy fluxes is most generally performed as a sub-
ordinate solution. For example, in the boundary-layer solutions of current
interest, state solutions are required at several interacting locations. Thus,
in Ref, 7 (Part III of the present series of reports) state solutions are
required based on assigned "elemental" mass fractions (or ay ), enthalpy and

pressure, i.e.

state = f(a;, h, P) (58)
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This solution provides to the boundary-layer solution the detailed state
including thermodynamic, transport and radiative properties as well as the
production rates dai/dt . The last term must be included with the general
mass-balance relations of the boundary-layer program.

The specific relations used to achieve the state solution are the equi-
librium equations (Eg. (16))}, the mass balance relations (Eq. (25)), the pres-
sure constraint (BEq. (19)) and an enthalpy constraint

) by = B (59)
3

which involve no greater complexity than the conventional isolated system
equilibrium solution. The coupling between this solution and the boundary-
layer solution requires not only the evaluation of the production rates,
dai/dt but also the rate of change of these rates with respect to the
independent parameters on the right-hand-side of Eq. (58). The rates are
determined with Egs. (35) and the derivatives by use of relations to be
developed in section 3 of this report.

Again, the problem of stability threatens when equilibrium approaches.
However, by following the approach previously presented, the kinetic terms can
be treated separately while all other terms of the mass-balance equations are
being collected. These equations can then be rearranged and combined with the
kinetic relations in such a way that controlling reactions again affect only
one equation at each location. Because of the overall implicit character of
the boundary-layer solution, this procedure will, on convergence, yield valid
stable solutions. It has been found, however, that the introduction of equi-
librium type relations into the set of boundary-layer equations can destroy
the linearity of the system. Therefore the approach of equilibrium by the
kinetic equations included in the boundary-layer mass balances will probably
delay convergence and necessitate the inclusion of certain iterations con-
straints.

2.3.3 Surface State Solutions

A more complex set of mass-balance relations are introduced when surface
state solutions are sought. Coupling between boundary layer, internal conduction,
and surface mechanical removal solutions may be involved in these relations. 1In
effect,all the other mass-balance solutions become subordinate to this solution.
Two types of boundary-layer representations are considered in this section.
One is the transfer-coefficient correlation of mass transfer using the Z*—potential
developed in Ref. 5 and also in Appendix B of Ref. 8. 1In Ref. 7 the fluxes at
the wall are expressed using an influence coefficient approach. Mathematically
these approaches reduce to

J; = Pl Cy(ZX - 2’;6) (60)
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and

33, dJ 33, ~
ji=j(i)+?ﬁ}'(h-ho)+§—(:v_)w{ <9V>w-<pv>3}+z - & - B
(61)

respectively. The nomenclature is as given in those references and the list
of symbols of this document. The diffusional mass flux ji of "element" 1

is coupled with the surface mass-balance equation

M +hmK -/ m %K. - (ov).X. - 3. =0 (62)
ccy g9; YT 21 Wi i

This equation includes fluxes due to the pyrolysis gas generation rate, mg
the char consumption rate, ﬁc, the surface mechanical removal rates of spe-

’

cies £ due to various mechanisms, ﬁrl , the bulk gas-phase convective flux,
(pv)w , each times their respective fraction of "element" i , and the diffu-
sive flux, ji’ of "element" i . An overall mass balance can also be written

by summing Eq. (62) over all i and noting the Z:ji = 0 , namely,

m, + mg - ;mrz - (pv)w =0 (63)

Because of the different treatment used with Egs. (60) and (61), they will

be developed individually, but generalized in a consistent format.

2.3.3.1 Surface Transfer Coefficients

In many boundary-layer analyses, the net diffusional flux of mass, heat
and/or momentum to or from the wall are the only results of practical concern.
Because of this, transfer coefficients have become extremely effective tools of
analysis when it is possible to develop good correlations by which their values
can be adequately estimated. Using the transfer potentials developed in Ref. 35
and Appendix B of Ref. 8,a directly coupled equilibrium surface thermochemistry
routine has been developed. Combining Egs. (60) and (62) and rearranging yields

K = Q =
i te peueCM €3 peuecM 93 Zi
m
1 | > v, Z Ty o )
=%, + —2 K, +/,, —K,. (64
mi i peuecM i 7 peueCM Li




where the £ subscript refers to the possible condensed species in the system.

The mass fraction of "element: i in the species £, K

44 can be expressed as

m.

i
. = V,. T
21 £i W&

el

(65)

Similarly, the gas phase mass fraction of "element" i can be expressed in

terms of the partial pressures of the gaseous species, Jj, namely,

X = L
Ki = 37 Z V1P (66)
93

where mg is the mean molecular weight of the gases adjacent to the wall,

that is,
ng = Z meJ (67)

where the summation over Jj 1is for gaseous species only. Recall that the

Vji are the stoiciometric coefficients in the formation of species j from
"element" i or the atoms of "element” i in a molecule of species j.

It is convenient to define the term P, for condensed species in a spe-
cial fashion for this open system mass balance, namely

mrszg
P, = T (68)
L p u CMWQ

Combining Egs. (63), (65), (66) and (68) with Eg. (64) yields

b4 m_+m p, M Y. P,V
N S U L . "N WL Zvjipj+___z_1z_1 (69)

z; mi PN g | P e%aCyn ng 3 ng

From Ref. 5, the definition of E; is found to be

ZPJ
j

(70)

[N
%
n
clﬁ
qFf

J
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where Fg is equal to Fj raised to some power, usually 2/3 for boundary

layer applications. The diffusion factor Fj is described in detail in

Ref. 5 and in Ref. 9. Also
z M.
= 1

Combining this result with Eqg. (69) yields, after introducing a normalizing
parameter F (= W%/hZ)

m_ + m Z?ﬁp ; ; AV

_ g C LY L i
P a = - P.V.. + p,v,. + P (72)

92 PeleCly PW% — 3 £7ed —~ ") px/F
J £ ] J
From Egs. (67) and (71), F is defined by
_ m pP.7.

F = 9 = LJ_J__ (73)

"2 Legmy/e

One of the more elusive aspects of surface-state solutions is the ade-
quate specification of the mechanical-chemical surface constraint. The pres-
ent formulation is based on the following set of contraints for condensed-

phase species.

p, = o] if T < Tp (74)
)/
and
Zvléi Zn Py < 4n sz (75)
i

with the equality applying to one species with T 2T. The first equation
£

implies that a particular condensed species cannot leave the surface until the
surface temperature is at or above that species fail or flow temperature, TF .

£
The second relation states that all present condensed species are in equilibrium
with the base species. The inequality applies to non-present condensed species
and prohibits a super-saturated vapor state. This is equivalent to saying

that at 100°c




Py (76)

20 < 1 atm.
The requirement that one species be at or below its fail temperature establishes
the structural limitation of the surface. A typical result might show a surface
at 2500°K with the equilibrium holding for Sic*and Slog, but if Siog has been
assigned a fail temperature of, say, 2300°K, pSi02 and thus &Sioz will be
positive 1nd1cat1ng liquid removal of SJ.O2 . The SicC% with a fail temperature

greater than 2500° K, represents the surface constraining species.

2.3.3.2 Boundary Layer Coupled Surface State

In order to couple the boundary-layer solution to the surface state equa-~
tion, several approaches are feasible., Because of the nonlinearity of surface-~
state solutions, there are significant advantages to isolating this solution
from the more linearly behaving transfer equations of the boundary-layer. The
chemical~state routines expect and can accept quite nonlinear systems of equa-
tions. The boundary-layer aspects of the surface~state calculations are thus
reduced to influence coefficients, similar in form to the transfer coefficients
discussed in the previous subsection, which are introduced into the surface
state equations. This linear reduction of the boundary-layer equation is
discussed in Ref., 7. With this approach in mind, the second surface diffu-
sional flux equation (Eq. (61)) can be introduced into Eg. (62) yielding,

after some rearrangement

aj 37
L |n% . %5 _i~ o
ny mcKci ¥ mg?g- 3 (pv),, (p") k ﬁk RS
9d; .
= _ 1 i 333
=a; = g _—a(pv)w (pv), *+ h Z Kk + {pv) K +Zmr£ Rzi (77)

k BKk £

where the partial derivatives and prior values (°) of the variables are

developed by the boundary-layer solution procedure.

Making use of Egs. (63), (65) and (66) and introducing the following
definitions
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. g
b = m 7
y3 r, m, (78)
Ch 37, 27
-1 i _ 1 i mk Ji
y = Y Y = = = (79-81)
fl ml a(pviw hl m B(pv)w Kkl mi a?k
yields
. - 77(1,?1 Z
ngal = mg +m, - ng ngyfl + . pjvji
]
+ Z Py ;YKkivjk ) * T, ijHj + szip!, (82)
J

A = E: 83
ii Yk ;V3k (83)
k
reduces Eg. (82) to
PRI, = |[m ; L2y Z
T A Mg¥e, * L P3Vii

g i -

J
ij)\ji +Zp£\)zi + Yhizijj (84)

j

This equation is similar to Eg. (72) and can be reduced to that equation if

m_+m is replaced by g.__¢ (85)
g ¢ peueCM
Yy and Yg are replaced by O (86)
Vi F
xji is replaced by —J-——Fj (87)
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The inclusion of heterogeneous kinetics in these equations is accomplished
by adding the production rate of "element" i per unit surface area to the
left side of Eq. (72) or (84). The subsequent treatment of this term is quite
similar to that previously presented for homogeneous kinetics. Thus with the
ka of Eq. (38) defined in terms of stoichiometric moles per unit of time and
surface area, the production term to be appended to the left of the final
Eq. (84) is PMri with r; defined according to Eq. (35). The same term
should be added to Eg. (72) but the ka are then normalized by peueCM'

As in the preceding kinetic problems, a set of controlling reactions is de-~
termined and the mass balance equations are rearranged so that each of these
reactions appears in only one of these equations, at which juncture the kinetic

terms are introduced into the mass-balance equations.

2.4 OBLIQUE SHOCK RELATIONS AND SUMMARY OF STATE RELATIONS

Certain constraints in addition to mass and equilibrium balances have
been mentioned in the preceding paragraphs. It is well to summarize these
briefly and to introduce one additional set of constraints, namely those
associated with flow across a shock wave. Up to this point, total pressure

has always been an independently assigned variable, thus
ij = P (88)
]

is an obvious constraint on the partial pressures. Other state constraints

have also been mentioned. In addition to temperature specification they are

.H. = hP
Z PyH m (89)
J. L
and
Z ijj = ij (S‘g - R 4n pj) = sPNM (90)
3.2 J.4

for specified enthalpy, h, and entropy, s, both defined per unit mass.

In the case of an oblique shock wave, none of the above constraints apply.
Instead, conservation of energy, mass and momentum are required. Using the
subscripts, 1 and 2, to denote conditions upstream and downstream of the shock,
respectively, with 6 as the angle between the flow vector and a normal to

the shock wave, these equations are

energy

2
u
1
hy ot

1 (91)



mass

plulcoSO

normal momentum

py * plulcoselulcosel

tangential momentum

plulcoselulslnel

Combining Egs. (92) and (94) yields

u151n61

p

P

u

p

2

u,cosf

272

2+

u.cosf.u,.siné

P2

2

272 272

sinG2

2

u,cosb . u_cost

2

2

2

(92)

(93)

(94)

(95)

that is, the tangential component of velocity is preserved across the shock.

Egs.

Now

(92) and (93) combine to yield

2 2
(plulcosel) (plulcosel)
Pyt = P, +
P P2
2 — : 2 2
uy = (u251n62) + (uzcos62)

which with Egs. (92) and (95) becomes

uj =

With this, relation (95) becomes

h, +

ot
1 2

22
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(uls1n61) +

Py

u,cosf._\?

1
)

1

- 1 i a . 1
= hz + 2 (ulslnel) + 2 (plulcosel)

2_1_
2
P2

(96)

(97)

(98)

(99)



Presuming knowledge of the upstream conditions, Egs. (96) and (99) contain

as unknowns only h2, Py and P2. These two equations can be further re-
duced to

(p,u,cos6.,)?
2 RT _ 171 1
Z: P + (plulcosel) - P, + —————EI————— (100)
J
6.)2
1 2 (RT)? _ (u;cosb,; 1

Z: ijj + 5 (plulcosel) B = PN {hl + — (101)
J

where the non-subscripted variables are downstream of the shock. The first

of this pair of equations replaces the more conventional pressure constraint
and the latter the enthalpy constraint.

2.5 SUMMARY

In this section an attempt has been made to formalize the basic relations
so as to simplify the generation of an orderly solution. Unfortunately dealing
with nonlinear equations such as these is never straightforward and is subject
to many pitfalls. In the next section, the procedures as adopted in the cur-
rent solution technique are described.

SECTION 3
SOLUTION PROCEDURES

3.1 INTRODUCTION

The solution to a set of simultaneous nonlinear algebraic equations can
be either trivially simple or agonizingly difficult, depending on the lin-
earity of the system and the depth of coupling existing between the equations.
None of the problems formulated in the last section fall into the first class
and some fall into the latter. The basic formulation adopted is relatively
conventional, and will be described first, followed by some discussion of the

pitfalls that can be encountered and devices adopted to circumvent them.

3.2 BASIC FORMULATION

The most direct method of solving a set of nonlinear algebraic equations
is the Newton-Raphson procedure. 1Its application is straightforward in con-
cept but in reality many choices occur during the formulation of a specific
problem, choices which can affect the success or failure of a specific solu-

tion. The method itself is the extension of Newton's iterative method to
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multi-dimensional problems. Errors are evaluated for each of the equations
based on a set of trial values for the unknown independent variables. The
rates of change of these errors with respect to these independent variables
are analytically determined, also based on the trial values. The differential

relation

aEl JOE

_ 1
dE, = v, av, + 3, av, + ... (102)

will apply for each error and the set of independent variables Vl' V2' cee o

Considering this as a set of simultaneous equations in dvl, dV2, etc., solu-
tion is readily obtained as
8V1 BVZ
dVl = -B—E—]-: dEl + S_E—z dE2 + ... (103)

where the partial derivatives are the elements of the inverse of the matrix
of the partial derivative coefficients of Eq. (102). Presuming these deriva-
tives to be constants, the necessary corrections to each independent variable
could be obtained as, for example

aVl 3V2
AVl = SE-I AEl + 35 AE2 + ... (104)
2
where the AEl, AEZ, ... are simply —El, —E2, ... 1f the errors are to be

driven to zero.

It should be noted that if some function of V 1is substituted for V

in the above equation
= = == AE, + ==— AE, + ... (105)

implying simply that in the formulation of the derivatives no commitment is
made with regard to the optimum means of expressing the corrections of the
independent variables, for example, in terms of 4n pj or simply pj. In
the formulation followed here, 4n pj, Py, Zn T,‘ and £4n(P?) are taken
as the set of independent variables, but corrections are often in terms of
P., 1/T and PMN. In some systems this choice yields linear mass balance

J
equations which if once satisfied will never deviate.
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In Table I the relations developed in the preceding section are summarized.
In addition to the relations, given as error equations, the derivatives of the
errors with respect to each of the set of independent variables are given. It
should be apparent that many arbitrary choices go into the relations for these
derivatives. As an example of this arbitrariness, consider the closed system
mass balance and the derivative with respect to 4£4n(P?7) . 1In the table aiPm
is given but the actual program permits either that term or the summation of
vjipj over all j and £. At convergence these terms are identical, but
during the convergence process different paths are followed by the two expres-
sions. Cases have been encountered where convergence was unsuccessful with

the first expression and successful with the latter.

3.3 SOLUTION CONVERGENCE

In general the convergence of the set of equations appropriate to a
particular problem will depend on a number of factors in addition to the for-
mulation of the derivatives. Correction coordinates, initial estimates, and
correction restraints are all major factors. The following subsections will

explore these factors in some detail.

3.3.1 Correction Coordinates

It has already been mentioned that the choice of coordinates can demon-
strably effect the convergence of a system, Obviously a coordinate system
that most nearly linearizes the relations between errors and independent
variables is to be sought. Thus we note that with the closed system mass
balance relation, the error expression is linearly dependent on P7, pj, and
Py, thus making them prime candidates as the independent correction variables.
Likewise, the gas-phase equilibrium eguation with error expressed as shown is
linear in 1/T and 4n Py, creating a bit of conflict between the two expres-

sions for pj.

Another specific example involves sets of species which are significant
in only one mass balance, in particular ions which may be consequential in
only the charge neutrality balance. For singly charged or ionized species,
it can be shown that both charge balances and equilibrium can be expressed
linearly in terms of the product pij where I denotes the base species
associated with charge neutrality (usually the electron) and 3j represents
all charged species. The mass balance (i.e., charge neutrality balance) is
simply multiplied by Pr- The equilibrium relations (Egq. (16)) are written
as

L 1 T L ViE Vit
E{ = ppy || »; 77 pg (106)



where the product is for all the neutral base species. For singly charged
species with the electron as I, va is either +1 or -1 and the linearity

of pij is obtained. (Note that pi is included in pij.) This repre-
sents a considerable departure from the previous evaluation of eguilibrium

errors, this error equation being related to the previous one (Table I) by

Ei =--pIpj [exp(Ej) - l] (107)

The purpose of this discussion has been to establish the flexibility of the
Newton-Raphson procedure with regard to dependent and independent variable
specifications and the advantages that can be achieved by seeking a nearly

linear dependence of the errors on the independent variables.

3.3.2 Correction Restraints

In this highly nonlinear application of the Newton-Raphson technique a
variety of constraints with regard to independent variable corrections are
necessary. These constraints all manifest themselves in a damping factor
which limits the extent which the solution is advanced down the correction

vector.

This factor is determined by use of the following limiting relation,

4 + 4(&n p.)
J L0

(40 B)p; < T T (108)

{0

that is, if a predicted increase in Ej from a value ﬁj yields a value
— Lo
of pjh' exceeding that indicated by the right hand side of Eq. (108), a
i
damping factor will be applied such as to achieve the equality. For the

case of decreasing Ej this equation can be manipulated to

-4 + 3(Zn Ej)

(¢n By) 2 ——hi (109)
£0 4 + (£n p.)
) hi
with the same implications. The following table demonstrates the nature of

the equality in these relations.
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£o —® -13 -5 =3 -2.33| -2 -1 0

hi -4 -3 -2 |F1.33% -1 -.6 0 1.33

The term, Ej' is the partial pressure of species i normalized by its
relative contribution to the mass balance equation wherein it is most signi-

ficant. Specifically,

X =
P, = P (J’k) (110)
J 31 X4, %' max over
all j max over
all k
where X4, x% is the sum of all terms involving Py in mass balance k. ..r

gas phase species whose initial value of p. is less than the appropriate
starred entry in the above table a logarythmic partial pressure correction is
applied. Otherwise linear corrections are employed. After evaluating all
corrections the minimum damping factor is determined, and is subsequently
applied uniformly to all corrections.

3.3.3 1Initial Guesses

It is obvious that a good first guess can save time in any iterative sclu-
tion. 1In the present formulation these guesses are generally based on previous
solutions and only the initial stagnation or shock solution does not have the
benefit of prior solution. This solution is readily obtained from practically
any first guess, since the stagnation state is usually at relatively elevated
temperatures and has a fixed "elemental" composition. In the subroutine ver-
sion of the chemical-state program used in conjunction with the boundary-layer
procedure, first guesses are generally based on solutions at the same boundary-
layer transverse location stored during prior iterations in the boundary-layer

program or from solutions at the preceding axial station.

Because of the introduction of new species by the wall material it is
necessary to initialize their compositions when the corresponding elements
appear in the state solutions. Likewise if a species disappears, e.g., as
the edge of the boundary layer is approached or because the sequence of bound-

ary layer iterations results in the termination of surface mass addition, it
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is necessary to zero the species in a fashion that will not result in a singu-

lar solution for the rest of the equations.

It is apparent that bookkeeping becomes a major factor in the state
programs if efficient and stable repetitive utilization is to be made of the
routines. This bookkeeping establishes optimum first guesses, determines
which atomic elements are present, and zeros or initializes the appropriate

molecular Species.

3.4 SOLUTION MECHANICS

Up to this point the more basic aspects of the solution procedure have
been presented. The actual mechanics also need to be described. The computa-
tional procedure is composed of eight major parts, the bookkeeping, the input
and data organization, the evaluation of temperature-dependent thermodynamic
properties, the evaluation of errors and the derivatives of the errors with
respect to the independent variables, evaluation and integration of kinetic
terms into the arrays of errors and derivatives, the inversion of the reduced
forn of the resultant matrix, the evaluation of corrections as limited by the
constraints, and the determination of properties and property derivatives

(arter final convergence).

These eight parts are represented by eight routines in the Aerotherm
Chemical Equilibrium (ACE) program. Each of these will be briefly described
in the following paragraphs.

EQUIL

This routine is the main routine of the ACE program (or subprogram in con-
junction with the CABLE program). It controls the majority of the bookkeeping,
develops the constant terms of the mass balances, outputs the solution, con-

trols the main iteration, and exercises certain limited solution constraints.

INPUT

This routine controls the reading of element and species data, the selec-
tion and setting-up of base species, the evaluation of the v, array, flag-

ging of condensed species, and the setting-up of the very first guesses.

THERM

The evaluation of such temperature-dependent thermodynamic properties
as enthalpy, entropy, specific heat and free energy are determined for each

species by this routine.
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MATER

For the specific option being considered, this routine evaluates all
errors and error derivatives according to the relations given in Table I.
It also prepares a matrix of coefficients based on a reduced set of indepen-
dent variables. This is accomplished by substituting the expression for
£n P obtained from the equilibrium relations (Eq. (16)) into the mass
balance relations. This simple algebraic substitution produces a very sig-
nificant reduction in the order of the coefficient array. Thus in the mass

balance equations

3E,
i
W 5 d £n Py (111)
is replaced by
JOE, AH.
—t — -
S In 5; Z:Vjid 4n p; + RT d4n T dEj (112)
i

The variables in the reduced array become £n P Zn T, 4&n P7M and Py -

This procedure is essentially the same as that described in Refs. 3 and 4.

KINET

This routine determines reaction rates; ascertains the controlling reac-
tions, on the basis of which it forms the 9% transformation matrix; prepared
the reduced correction coefficients for the kinetic terms; and combines them

with the previously determined coefficients.

RERAY

This general purpose inversion routine inverts the reduced coefficient and
multiplies the result times the set of errors yielding an unconstrained set of

corrections for the reduced set of independent variables.

CRECT

The unconstrained corrections for the remaining independent variables are
calculatea by this routine. For species which are important in mass balances

the logarithmic corrections are changed to linear corrections, i.e.

1
= = 401 . 13
. A 4n p (113)

Ap
3 ]

3
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in order to emphasize the linearity of the mass balance equations; all cor-
rections are checked with regard to the constraints of Egs. (108) or (109)
and the minimum multiplier is determined, and corrections are appropriately

reduced and added to the previous trial balance.

PROPS

This routine evaluates transport properties according to equations of
Ref. 1 as well as the derivatives appropriate to the boundary-layer solution

(see Section 4).

These brief descriptions serve to give an overview of the routines in-
volved in the state calculations. The program has been extremely successful

on a wide range of problems and convergence has usually been quite satisfactory.

SECTION 4
THERMODYNAMIC PROPERTY EVALUATION

Once solution is obtained for a given set of input parameters it is still
necessary to evaluate a variety of properties which are state dependent. Some
of these require simple summations and no particular discussion is required.
Others involve either first or second derivatives of the state with respect
to certain input variables. It is these properties with which the present
section 1is primarily concerned. One of the incidental advantages of the
Newton-Raphson procedure over other direct search or optimization (gradient)
methods is that most of the information necessary for derivative determina-

tion is already compiled when solution is achieved.

Consider the closed system, assigned-enthalpy-pressure option. The re-
duced set of independent variables used in the formulation are £n Py, Py
£n(P7M, and 4n T. In the program assignment, the independent variables are
h, P, and Ty, the last term being the gram-atoms of "element" i 1in a gram of
system. The equations which implicitly describe this system were summarized

in Table I. The problem reduces to a set of equations

£, 0x5,¥,) = 0O (114)

where the Xy might be considered as the reduced set of variables 4n P,
Py Zn(P7), and £n T, and the y, are h, P and oy - The goal is to achieve
derivatives of the form (3x/3y) at constant all other vy, for example
(aT/ah)P'ai. The general procedure for doing this is described in Appendix A.
The appendix actually considers both first and second derivatives, although
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in practice only the first derivatives have been calculated. For the first
derivatives

axi _ afk -1 afk (115)
3y, X, dy,
Yy ¥i 0¥y *ir ¥y

i
L'#L it#i L #4

The matrix which must be inverted is identical with the error-coefficient
array previously developed. The last vector term in the above equation is
readily evaluated based on the error equations. Considering the error equa-
tions of Table I, the following table indicates the important derivatives for
the assigned enthalpy, pressure and elemental composition problem.

Derivative
with re- P h Qe
spect to

Equation
Enthalpy 0 [-P7M 0
Pressure -1 0 0
Conservation 0 0 -P7
Equilibrium 0 0 0

It should be noted that the reduction of independent variables that occurs
when the equilibrium equations are substituted into the remaining equations
does not affect these derivatives because P, h, and o do not appear

in the equilibrium relations. Also the PM product is taken as a single
independent variable (of the x-set) and thus does not enter into the partial
derivative terms tabulated above. For the given example, derivatives of
4n T, 4n P7, £n Py and p, are determined with respect to h, P, and «a..

k
The derivatives of 4n pj are obtained by applying

AH .
_ —1
4 £Zn pj = E:Vji d £4n Py + RT d4in T (116)

h i

Derivatives of composition-~dependent properties can then be obtained by con-

ventional procedures. It is perhaps worth noting the relation between some

31



of the more conventional thermodynamic properties and the base set of variables.

Specifically
1{3 ¢n T\
Cp = E(ah . (117)
Iak
(a in M - p { 3_£n PM _ (a Ln PM d_4n T)_l (a 4n T } -1
d £n P - AP 3h dh P
T,ak h,ak P,ak P,ak h,ak
(118)
3 4n M 3 _4n PM 3 4n T\t (119)
3 4n T P.a dh P dh P.a
Ik lak 'k
2 -1
R I - I E s -
s T,ak jol P,ak
(120)

are useful relations. A convenient reference to other thermodynamic deriva-
tives is listed under "Thermodynamic Formulas" in more recent editions of
the Handbook of Chemistry and Physics.

Similar relations to those given above can readily be generated for solu-
tions at assigned entropy and pressure. For other cases it is often simplest
to formulate the enthalpy, pressure, composition derivative array after obtain-
ing solution based on a different set of constraints. This array is then used

as indicated in the example above.

SECTION 5
SUMMARY AND CURRENT STATUS

In the preceding sections a general chemical state procedure has been
developed and mathematically applied to a number of open and closed thermo-
dynamic systems. An effort has been made to provide a relatively general
approach to the problems associated with such solutions and to indicate, via
examples in some cases, means of circumventing them. A very brief discussion
of the mechanics of the solution served to introduce the program and subprograms
involved in the computer analysis. Some of these routines are quite general in

their present formulation, others directed toward specific systems.
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Currently all equilibrium aspects of the program are fully operational
for general chemical systems. This includes the various closed and open sys-—
tem options, the shock wave relations, the surface coupled boundary layer mass
balances, the bookkeeping involved with treating appearing and disappearing
atomic elements, and the property and property derivative calculations. The
KINET routine currently treats only the heterogeneous reactions associated
with graphite oxidation and reduction. The generalization of this routine
following the detailed approach presented in this report is a major recom-

mendation of this report.

The report has discussed in rather general fashion the treatment of gen-
eral chemical systems. The ultimate program which should evolve from this
study will be a General Nonegquilibrium Ablation Thermochemistry (GNAT) program
designed for treating the problems associated with equilibrium and nonequilib-

rium at and above ablating surfaces.
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TABLE I

SUMMARY OF EQUATIONS AND RELEVANT INFLUENCE CCEFFICIENTS*

1. Gas Phase Equilibrium: £for all non-base gas phase species

\—'1 @
ERROR = - 4n Kpj' + Yj' - L Vj‘iyi
i

Derivatives with respect to:

tnpy 8., (= 1.0 if § = 3'; =0 if 3 # 3')

1]
Y _vj'l
or [¢)
Pz 0
P, 0
gn P7: O

~H, o+ Zvj,iHi
RT

Zn T:
2. Condensed Species Equilibrium: for all present non-bhasc condensed
species Q
. y @
ERROR = - iIn hpzl =) Vei¥i
i

Derivatives with respect to

in .2 O
pJ
Yit TV
or o
pi: 0
Pp. 0

in PW 0

i1 g+ vy h
RT

* . , . . .
Notes in circles and indexing conventions are at the conclusion of the table.
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TABLE I (continued)

3. Surface Equilibrium: for the condensed species with the smallest
algebraic error having a fail temperature

equal to or greater than system temperature

®
ERROR = =~ £n KPI* - z:vz*iyi if £* 1is non-base
i

ERROR

- Ygx if 4% is base species

Derivatives with respect to:

dnp.: O
Pj
Yit Vi
or ®
pi: 0
Py 0
in P: O
H + &£ v (H.
in T L* R; E 2l N if £* is non-base
Zn T: O if 4* 1is base species

This constraint is deleted if the chosen species is a present condensed spe-

cies, i.e., if the system temperature equals the species fail temperature.

4. Closed System Enthalpy:

ERROR = ~P7h + Z pyH;

j.i,L
Derivatives with respect to

£n pj: iji

yit PiHy

or @
pi: Hy

pz: Hz

35



TABLE I (continued)

5. Closed System Entropy:

ERROR = -P7S + Z PySy
j.i,2

Derivative with respect to
in p.: .(S. - R
py: Py(S8y )

yi: p.(S. - R)

i3
or @
Pi: Sy
plz Sz

Zn (P : -PMs

£n T: § piCp
6. Pressure:

ERROR = =P + é Pj

o
Irtg

Derivatives with respect to

£ .3 .
n p] p]
Yi: Py

or ®
p;: 0
Py: 0
4n (P?): O
Zn T: O
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TABLE I (continued)

7. Oblique Shock Momentum:

(plu cosf,)? Z
1 1 3
ERROR = -P; - e + Py * (pyu cos8,) .m
j:ig
Derivatives with respect to
£ .2 .
" Pyt Py
Yj Pi
or @
Py 0
Pg: 0
2
in P - (plulcose ) P7R
in T: (pl lcosel) P77(
8. Oblique Shock Energy:
(u,cos )2 Z
= 1 1 (RT)
ERROR = ~P h —_— H. = 2
77([ 1t 5 :l + L pJH:j + 5 (plulcosel) P
J.i,4
Derivatives with respect to
£n .3 .H.
Pj:  PyHy
Yit PiHy
or @
byjr Hy
pz: Hz
(u,cos6,)3
4n (P : —PW([h + —1 1 -1 2 (RT)?
1 ) 5 (plulcosel) _(FTRL
£n T: (plulcosel)a —(%%L + T C p
i,j,8
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TABLE I (continued)

9. Closed System Mass Balance:

ERROR = <-P7a., + Z v..,P.
1 . Jji J
j.i. L

Derivatives with respect to

in p.: s . :
Pyt Vii0Py Pyt Vgio
tn (PM): -Pa,,
v.: b..,p. 1
1 11 L tn T 0
or [©)] :
Pt Bi4s

10. Surface Mass Balance Coupled to Boundary Layer:

ERROR = -PMa;, + (pV)(PWngiI + E: Pjvy; t pié
3
* Z Pityar *pri- TR g Z P33
. . "i
Joig £ Irlg
(pv) = Mg +m, - Z psz/ng
£,ig

Derivatives with respect to
4n pj: [(pv) vji' + in, + Yhi.Hj] pj

Yi: l:(pv) éii' + )\ii' + Yhi|Hi] Pi

or @

Pyt 1= (M/PMY(PMgYe  * Z Pj"ji')
Jllg

1

pz: V.Ci' - (mt/ng)

P + V..
ngYfil Z. pJlel )
J:lg

— .. Y.p,7m, Z
in (ng): [—Qi + (mg + mc) Yfl,] ng+ —P;”T;_—— pj\)]i,

j,i
in T: T H.
Yhi E PJ j
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TABLE I (continued)

11. Surface Mass Balance Coupled to Convective Coefficients:

ERROR

)

(pv)

= ~PM a
92

+ (pv) Z Pjvige + sz Veir * Pt

Jlg

+Z py—ll-'L—

™

JFg/ﬁ

Z mzp,

e eM Epm

g

Derivatives with respect to

4n py: ((pv) +%§')Vji'pj + Z Virge —-J—(l - F/F*)

( {pv)+

E Z Pj' F
E_ .,pP., + V., (1L - #/F%)
Frjoiitmde - 3 e JF .
rig h)
Y. mp
2]
* Z PV E,lc WZJ_P& $@
] .
—. 3Py oom YPmJ
J Ilg J i J ] J J
g 'Tg
n.
1
B PyVyir
Jeig

v . F"f
J',lg /_

Z. My Py
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4n

TABLE I (concluded)

% )
L
Pz° Vzil - Z ijjil
L. Py 53
Jeig 'Tg

(ng) : _ngazi-

4n T: O

INDICES
base species or "elements"
gas phase non-base species

condensed non-base species

included for condensed base species only
included for gas phase base species only

implies successive summation over all gas phase species

NOTES

The variable y; can have the following specifications

Zn P, for gas phase base species

= 0 , for present condensed base species or base species represent-
ing a non-present element (in this case P becomes the

system variable in place of yi)
< 0 , for non-present condensed base species

variable, for non-present base species representing a present element.

In all but the second instance Y is a necessary but unknown variable
of the system of equations.

The variable p; is used in lieu of Yi if the base species, i, is a

present condensed species or represents a non-present element.

Note the Vixi = 61* i if £* is a base species, likewise, Vijr = éii'
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PRECEDING PAGE BLANK NOT FiLir- -

APPENDIX A

DETERMINATION OF A SET OF FIRST AND SECOND DERIVATIVES
IMPLICITLY DEFINED BY A SET OF NONLINEAR ALGEBRAIC EQUATIONS

A set of K nonlinear algebraic equations in K variables X and j

parameters yj, can be expressed generally as
fk(xi,yj) = 0 1<ks<X, 1lsi=<K (1)

For any set of values for the parameters, yj, the - Xy

are implicitly defined
by the Egs. (1).

In many instances it is also desirable to obtained the ef-
fect of changes in the parameters y. on the variables

x,, that is axi/ayj.
In the present case axi/ayjayj, are also sought.

By differentiating Eq. (1) considering all X and yj independent,
the following partial derivatives can readily be obtained
L T S R
i YJ i YJYj. lyj
The total differential of Eq. (1) is
dfk = fk dxi + fk dyj = 0 (2)
X, g

where the repeated index implies summation. Dividing Eq. (2) by dy.,
holding all other yj constant, but allowing the X5
the Egs. (1), yields

r

to vary in accord with

afk dX

— = f — + f = 0 (3)
Yy kxi Y4 k

e

where a convention has been adopted whereby afk/ayj, implies (afk/ayj,) .
j # 3' but with X, varying to satisy Egs. (1) and fky. implies ]
J ]

’

(afk/byj.)y_x ’ 3 # J* . This set of K linear (in axi/ayj,) algebraic
equations cgnlbe solved to yield

-1
dx.,
-1

= - |f £ (4)
Y5 k.. ky
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which represents the desired result for

ferential of Eq. (3) yields
ot dx
k i
dl =—— | = £ dx +
Y., k Y. i’
3 xixil I
+ fky v dyj + fk
3¥5e Y5

If this relation is divided by dyj* at constant

X; varying in accord with the Egs. (1),
2
3 fk & Bxi axi, .\
dy.,0VY. Tk dy.. .
Yx0Y . xix;, oYy Y 4%
+ fk v + fky N
Yj* 3t 3t
Solving for aaxi/ayj,ayj* yields
Bzxi* -t
— = - |f £
. . k k
BYJ.BYJ* X, XX,
Bxl
+ £
k Y+
Xiyj* j

which represents the desired result for second derivatives.
first term in the brace involves a triple sum (over Xk,

time required to generate a single term is proportional to

all other yj
there results

3% x

bt
k
Yj|Yj*

KG

first derivatives . Taking the dif-
axl axl

f dy. + £ d
k Ay j k AV,

x;¥5 73 x5 3

dx;, = 0 (5)
il

but with

(6)

(7N

Note that the
i and i') and thus the

To generate

all terms in the three-dimensional array of second derivatives requires a time

K.

proportional to
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